CBCS SCHEME

	 	 7	 	 	 	
USN						17EC52

Fifth Semester B.E. Degree Examination, Jan./Feb. 2023 Digital Signal Processing

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

- a. Describe the process of frequency domain sampling and reconstruction of discrete time signal.

 (10 Marks)
 - b. Find the 4-point DFT of the sequence $x(n) = \{1, 2, 3, 4\}$ and verify the result with IDFT using matrix method. (10 Marks)

OR

- 2 a. Determine the 8-point DFT of the sequence $x(n) = \{1, 1, 1, 1, 1, 1, 0, 0\}$. (08 Marks)
 - b. Using Concentric circular method obtain 5 point circular convolution of two DFT signal defined by

$$x(n) = (1.5)^n$$
; $0 \le n \le 2$

(08 Marks)

y(n) = (2n-3); $0 \le n \le 3$

c. State and prove Linearity property of DFT.

(04 Marks)

Module-2

3 a. State and prove circular time shift of DFT.

(06 Marks)

- b. A length -6 sequence $x(n) = \{1, 3, -2, 1, -3, 4\}$ with 6- point DFT given by x(k). Evaluate the following function $\sum_{k=0}^{5} |X(K)|^2$ without computing DFT. (04 Marks)
- c. Find the output y(n) of a filter where the input response h(n) = {1, 1, 1} and the input signal x(n) = {3, -1, 0, 1, 3, 2, 0, 1, 2, 1} using overlap save method assuming the length of the block is 8.

OR

a. State and prove circular frequency shift property in DFT.

(05 Marks)

b. Determine the number of complex multiplication complex addition real multiplication, real addition and trigonometric function for N = 8 and N = 16 for direct computation of DFT.

(05 Marks)

c. Using over-lap add method compute y(n) of a FIR filter with impulse response $h(n) = \{3, 2, 1\}$ and input $x(n) = \{2, 1, -1, -2, -3, 5, 6, -1, 2, 0, 2, 1\}$. Use 8 – point circular convolution in your approach. (10 Marks)

Module-3

- 5 a. Find the 8-point DFT of the sequence $x(n) = \{1, 2, 3, 4, 4, 3, 2, 1\}$ using DIT FFT radix 2 algorithm. (10 Marks)
 - b. Describe Goertzel algorithm. Also obtain direct form I and Direct form II realization.

(10 Marks)

OR

6 a. Find the IDFT of the following sequence using DIF-FFT algorithm

$$x(k) = \left\{ \frac{7}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2}, -\frac{1}{2}, \frac{1}{2} \right\}$$
 (10 Marks)

- b. Compute the 4-point DFT of the sequence using DIT-FFT algorithm $x(n) = \{1, 0, 1, 0\}$.

 (04 Marks)
- c. For sequence x(n) = (1, 0, 1, 0) determine x(2) using Goertzel algorithm. Assume initial conditions are zero. (06 Marks)

Module-4

- 7 a. Sketch the direct form I and direct form II realization for the system function. Given below $H(z) = \frac{2z^{-2} + z 2}{z^2 2}$. (10 Marks)
 - b. Design a digital Butterworth low pass filter with frequency specifications given :
 - i) Pass band ≤ 3.01 dB
 - ii) Pass band edge frequency: 500Hz
 - iii) Stop band attenuation : ≥ 15dB
 - iv) Stop band edge frequency: 750Hz
 - v) Sampling rate $f_s = 2KHz$

Use bilinear transformation method.

(10 Marks)

OR

8 a. Obtain the cascade form realization for the system given by

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{\left[1 - \frac{1}{4}z^{-1} + \frac{1}{2}z^{-2}\right]\left[1 - \frac{1}{5}z^{-1} + \frac{1}{6}z^{-2}\right]}.$$
 (06 Marks)

b. A digital filter is given by

$$H(z) = \frac{1 - \frac{1}{2}z^{-1}}{\left(1 - \frac{1}{3}z^{-1}\right)\left(1 - \frac{1}{4}z^{-1}\right)}.$$
 (06 Marks)

c. An analog filter is given by $H_a(s) = \frac{3}{(s+3)(s+1)}$ with T = 1Sec. Obtain H(z) using bilinear transformation. (08 Marks)

Module-5

- 9 a. Given FIR filter with $y(n) = x(n) + \overline{3.1x(n-1)} + 5.5 x(n-2) + 4.2 x(n-3) + 2.3 x(n-4)$. Sketch the lattice structure. (10 Marks)
 - b. The desired frequency response of a lowpass filter is given by

$$H_{d}(w) = \begin{cases} e^{-j3w} & |w| < \frac{3\pi}{4} \\ 0 & |\pi| < \frac{3\pi}{4} < |w| < \pi \end{cases}$$

Determine the frequency response of the FIR filter if Hamming window is used with N = 7.

(10 Marks)

OR

10 a. Realize the system function given by

$$H(z) = 1 + \frac{1}{3}z^{-1} + \frac{1}{5}z^{-2}\frac{1}{4}z^{-3} + \frac{1}{8}z^{-4} + \frac{1}{9}z^{-5} + \frac{1}{2}z^{-6} \text{ in direct form.}$$
 (04 Marks)

b. Obtain the cascade form realization of system function

$$H(z) = 1 + \frac{5}{4}z^{-1} + 2z^{-1} + 2z^{-3}$$
 (06 Marks)

c. A Lowpass filter is to designed with the following desired frequency response

$$H_{d}(w) = \begin{cases} e^{-j2w} & ; & |w| < \frac{\pi}{4} \\ 0 & ; & \frac{\pi}{4} < |w| < \pi \end{cases}$$

Determine the filter coefficient $h_d(n)$ if w(n) is a rectangular window defined as

$$W_{R}(n) = \begin{cases} 1 & ; & 0 \le n \le 4 \\ 0 & ; & \text{otherwise} \end{cases}$$

Also find the frequency response H(w) of the resulting FIR filter.

(10 Marks)